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Abstract:

Proper and timely characterization of the safety profile of a pharmaceutical 
product under development, is imperative for assessing the overall benefit-
risk relationship of the product, and for making key development 
decisions. For ongoing clinical development, a comprehensive and robust 
safety monitoring and safety signal detection (SSD) program which is based 
upon inferential statistical reasoning is critical. Methods presented here can 
be applied to SSD as well as periodic safety monitoring (e.g., SUSAR reporting, 
Development Safety Update Report [DSUR], Investigator Brochure IB], 
etc.). Various statistical properties, distributions, and models, utilizing a 
Bayesian framework are considered and further examined, to identify robust 
methods applicable to a broad set of scenarios and situations. Methods 
developed for incidence counts (including those with under-dispersed 
distributions) with variable time-at-risk, and with underlying constant or non-
constant hazard rates, are proposed and compared to traditional methods 
designed to assess adverse event incidence rates or binomial incidence 
proportions, which assume an underlying constant hazard rate and 
subsequent Poisson distribution for modeling event counts.

Robust Safety Monitoring and Signal Detection Using 
Alternatives to the Standard Poisson Distribution
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 Pharma in the news

Motivation for SSD
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 Regulatory Environment

 Code of Federal Regulations (CFR 312.32)

 Safety Reporting Requirements for INDs and BA/BE Studies (Final Guidance, Dec 2012)

– An “aggregate analysis of specific events observed in clinical trials that indicate those 
events occur more frequently in the drug treatment group than in a concurrent or 
historical control group”

 Safety Assessment for IND Safety Reporting (Draft Guidance for Industry, Dec 2015)

– Sponsors should develop a Safety Assessment Committee and a Safety Surveillance 
Plan.

– Sponsors should periodically review accumulating safety data, integrated across 
multiple completed and ongoing studies

– Provide a quantitative framework for measuring the evidence of an association 
(unexpected events) or a clinically important increase (for expected events)

 Sponsor Responsibilities – Safety Reporting Requirements and Safety Assessment for IND and 
Bioavailability/Bioequivalence Studies (Draft Guidance 2021)

Regulatory requirements / Sponsor obligations
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 Regulatory Environment

Safety Monitoring and SSD requirements (regulatory)

 Signal Definition
Information that arises from one or more multiple sources (including observations or experiments),  
which suggests a new, potentially causal association, or a new aspect of a known association between   
an intervention [e.g., administration of a medicine] and an event or set of related events, either adverse 
or beneficial, that is judged to be of sufficient likelihood to justify verificatory action. (CIOMS, 2010, p. 14)

 Signal Detection Definition

The act of looking for and/or identifying signals using event data from any source. (CIOMS, 2010, p. 116)

 The Core of Safety Signal Detection

Define and assess measures of disproportionate reporting (e.g. observed / expected). Identify events 
exceeding a specified threshold. (Good Pharmacovigilance Practices…, 2005)

Regulatory requirements / Sponsor obligations
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Regulatory Requirements / Sponsor obligations

 Commitment to Patient Safety

• “Patient safety is at the heart of all we do and one of our core principles. All of our medicines undergo thorough 
safety monitoring and evaluation processes at every stage of a medicine’s lifecycle” – Teva Pharmaceuticals

• “Mallinckrodt is committed to the safety of patients, including those in the hospital settings, and the safe use of 
our broad portfolio of specialty pharmaceutical products,” – Hugh O’Neill, Sr. VP and President, U.S. Specialty 
Pharmaceuticals, Mallinckrodt.

• “Beginning with the discovery of a potential new medicine, and for as long as it is available to patients, our goal 
is to ensure that the benefits and risks of a medication are continuously monitored and well-understood by 
regulators, healthcare providers and patients.” – Eli Lilly

• “Part of our responsibility as a global pharmaceutical company is to help keep the patients who take our 
medicines safe.” – Pfizer

• “Celgene is a world leader in pioneering risk minimization techniques to deliver safe use of medicinal products.” 
– Celgene

• “Patient safety is the top priority for Biogen and AbbVie”.
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Regulatory Requirements / Sponsor obligations

Corporate Principles and Values

 Accurate characterization of a compound’s safety profile is essential:
 Patient safety
 Valuation of compound
 Required to provide timely and accurate information on informed 

consent (IC) statements and investigator brochures (IB).
 Aggregated data across all trials is required.

 Failure to report all safety findings in a timely manner leads to injury, loss of 
life, loss of consumer confidence for the company / industry, as well as  
significant financial implications for the company.



Robust Signal 
Detection: for 
Clinical Trials 
Data
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 Research for blinded analyses, Findings, and Results

Objectives of SSD Blinded Analyses

Signal

Missed 
alarm

False 
alarm

Noise

Criterion

No Alarm Alarm
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 Core Question

Objectives of SSD Blinded Analysis

An Example:
– Assume that the underlying AE pbo inc. prop. for a significant 

event (estimated from historical data (n=500) with 24 weeks 
of follow-up) is 2%.

– A new blinded study has Y events after 80 subjects (3:1 
randomization ratio) have completed 24 weeks.

– What is the expected value of Y, if there is no difference 
between actively treated subjects and current and historical 
placebo? How large does Y have to be to suggest that a 
difference (i.e. “signal”) exists?
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 A Simple Frequentist Solution

Theoretical Considerations: Simple example

Binomial Distribution
– pmf:  p(y) = 𝑛𝑛

𝑦𝑦 θy (1-θ)n-y ,   
y=0,1,2,…,n

– E(Yi) = θ,  var(Yi) = θ(1-θ)
– Y is a binomial random 

variable 
with mean and variance:

– μ = E(Y) = nθ 
– σ2 = var(Y) = nθ(1-θ) 
– Expected value: 

nθ = (80)(.02) = 1.6

n = 80, θ = 0.02

P(Y  <  y)
Probability

Binomial Poisson

1 0.1986 0.1986

2 0.5230 0.5197

3 0.7844 0.7792

4 0.9231 0.9189

5 0.9776 0.9754

6 0.9946 0.9986

7 0.9989 0.9997

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 1 2 3 4 5 6 7 8 9 10

Distribution for  binomial random 
variable Y ~ bin(n=80, θ=0.02)
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 A Simple Frequentist Solution:  Additional Questions

Theoretical Considerations: Simple example

Questions \ Issues
– How did we derive our estimate for 

θ?
– How confident are we in our value 

of θ? 
– What if our time-at-risk for our new 

blinded data is not equal to our 
time-at-risk from our historical 
data?

– What if subjects have varying 
follow-up time?

– What if our rates are not small?
– What if our underlying risk is 

variable (e.g., non-constant hazard 
rate)?

– What if our historical population is 
not representative of our new study 
population(s)?

n = 80, θ = 0.02

P(Y <  y) Probability

1 0.1986

2 0.5230

3 0.7844

4 0.9231

5 0.9776

6 0.9946

7 0.9989

0.00
0.05
0.10
0.15
0.20
0.25

0.30

0.35

0 1 2 3 4 5 6 7 8 9 10

Distribution for  binomial random 
variable Y ~ bin(n=80, θ=0.02)
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 Bayesian Philosophy, Bayes’ Theorem and Bayesian Analysis

Theoretical Considerations: Bayesian refresher

 Bayesian Philosophy
 Bayes’ rule provides a rational method for updating beliefs in light of new information 

(inductive learning ~ Bayesian inference)

 Bayesian methods are data analysis tools derived from the principles of Bayesian 
inference

 Statistical induction is the process of learning about the general characteristics of a 
population from a subset of members of that population.

 Bayes’ Formula/Theorem 

 P(A/B) = P(BA) / P(B) =  [P(B/A)P(A)] / [P(B/A)P(A) + P(B/𝐴𝐴) P(𝐴𝐴)] 

 p(θ|y) = 𝑝𝑝 𝑦𝑦/θ 𝑝𝑝(θ)
� ∫Θ 𝑝𝑝(𝑦𝑦/�θ)𝑝𝑝 �θ 𝑑𝑑�θ
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 Bayesian Philosophy, Bayes’ Theorem and Bayesian Analysis

Theoretical Considerations: Bayesian refresher

In Bayesian Analysis 
– P(θ|y)        P(y|θ) P(θ)

– The sample space Y is the set of all possible datasets, from which a 
single dataset y (the observed data) will result.

– The parameter space Θ is the set of possible parameter values, from 
which we hope to identify the value that best represents the true 
population characteristics.

– The prior distribution p(θ) describes our belief that θ represents the 
true population characteristic (e.g. our historical data).

– The sampling model for the data p(y|θ) describes our belief that y 
would be the outcome of our study if we knew θ to be true.

– Once the data (y) is obtained, we update our beliefs about θ. Therefore 
our posterior distribution p(θ/y) describes our belief that θ is the true 
value, having observed dataset y.

Posterior 
Probability

Likelihood model

Prior Distribution
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 The Form of the Finite Mixture Model

Theoretical Considerations: Mixture models

Model description and specifications 
 Suppose you observe realizations of a random variable Y, in which the distribution depends 

on an unobservable (latent) random variable S (e.g. treatment group assignment) that has a 
discrete distribution and can occupy one of k states (e.g. placebo, active treatment).

 Let πj denote the probability that S takes on state j. Conditional on S = j, Y is assumed to be 
fj(y; S=j).

 The marginal distribution of Y is obtained by summing the joint distribution of Y and S over 
the states in the support of S:

• f(y;α,β) = ∑𝑗𝑗=1𝑘𝑘 Pr 𝑆𝑆 = 𝑗𝑗 𝑓𝑓(𝑦𝑦; αj , βj|S)  =  ∑𝑗𝑗=1𝑘𝑘 π𝑗𝑗 𝑓𝑓(𝑦𝑦; αj , βj|S=j)

• This is a mixture of distributions and the πj are called the mixture (or prior) probabilities.

• This model is termed a Finite Mixture (of distributions) model, because there are k finite 
states of S.

• For categorical data, the binomial and beta-binomial distributions can be specified for the 
data.
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 General Bayesian Framework for assessing safety signals

Theoretical Considerations: Bayesian Application to SSD

Framework that applies to all models 
 The Bayesian framework for potential signal detection is based on evaluating the probability that 

a clinical parameter of interest (e.g. adverse event incidence rate or proportion) exceeds a pre-
specified critical value, given the observed blinded data. Mathematically, this is formulated as an 
inequality around a threshold and corresponding Bayesian posterior probability and is denoted 
as (Wen et al., 2015):
 Pr(θ > θc | blinded observed data) > P cut-off

where: θ represents the clinical parameter of interest(e.g., “pooled blinded proportion”,
estimated risk difference, etc.) 

θc represents the critical value for comparison (e.g., historical incidence 
proportion, or 0 if estimated risk difference is the clinical parameter of
interest),

P cut-off is a probability threshold (such as 90%, 95%, or 99%) representing the 
desired confidence needed to identify a potential safety signal.
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 Exponential, Binomial, Poisson, Gamma

Theoretical Considerations: Distribution Relationships

 Exponential  Poisson
 If the times between random events follow the exponential distribution with rate λ, then the 

total  number of events in a time period of length t follows the Poisson distribution with 
parameter λt.

 Interarrival times are independent and identically distributed exponential (λ) random variables, 
when λ is the rate of the Poisson process

 Poisson  Binomial/Bernoulli 
 If we divide an interval of time into disjoint intervals of length h, where h is small [e.g. 0 –h, h-

2h, 2h-3h,…], each interval corresponds to an independent Bernoulli trial, such that in each 
interval, there is a successful event with prob. λh.

 Bernoulli process is a discrete time approximation to the Poisson process with rate λ, if the 
distribution of B(t) is approximately Poisson (λt)

 Poisson  Gamma
 Time until nth event occurs has a Gamma (n, λ) distribution
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 Event Counts
 The Poisson distribution is a reasonable model for event counts if the 

event can happen more than one time.
• One parameter model with equal mean and variance.
• Assumes time to each event has an underlying constant hazard rate.
• Commonly used to model adverse events

 Incidence Counts
 Number of subjects who experience one or more of the given event 

(only 1st occurrence of event within a subject is considered); this is the 
typical parameter summarized/analyzed.
 This subtle restriction is sometimes ignored/overlooked
 More adequately described as grouped binary data (i.e., Bernoulli trials).
 Can lead to under-dispersed distribution (variance < mean)

Theoretical Considerations: Event counts vs incidence counts
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Theoretical Considerations: Event counts vs incidence counts 
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 Subject Follow-up Time
 Follow-up time will vary from just a few days to several years due to 

premature withdrawal, interim looks, etc. 
• With event counts (using the Poisson distribution) varying time among 

subjects does not matter.
• With incidence counts varying time among subjects can matter

 Example

Theoretical Considerations: Subject Follow-up time / time-at-risk

λ (per week) = 0.0250
Inter-event time (1/λ) = 40

Scenario (1) Scenario (2)
Subject Time (w) Prob(Event) Time (w) Prob(Event)

1 24 0.4512 2 0.0488
2 24 0.4512 16 0.3297
3 24 0.4512 24 0.4512
4 24 0.4512 36 0.5934
5 24 0.4512 42 0.6501

Totals (Expected Counts):
Incidence 120 2.26 120 2.07
Events (λt) = 120 3.00 120 3.00
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 Poisson[BDRIBs (1) and (2)] – Poisson likelihood  
 Model (1A) [Poisson (1)]: All (total) exposure time used in calculations

 Model (1B) [Poisson (2)]: Time-at-risk exposure time used in calculations

Models Evaluated: Constant Hazard Rate

Model (1A): Poisson(1) [BDRIBs]:  Y | E, δHP, k, r ~ Poisson(λ)

where:   λ   =   E * δHP * [(r * k + 1)/(k + 1)]
E    =  Total exposure time (for total blinded population)
δHP ~  Gamma(αHP=[λHP x  PTHP,]/DF, βp = PTHP/DF)
k     =  Randomization allocation ratio
r     =  p / [k(1 – p)], relative risk ratio of test (drug) treatment over 

placebo
p    ~  Beta(0.5, 0.5) [default non-informative prior for p]

DF = Discount Factor

Model (1B): Poisson[BDRIBs]

E = Total time at risk (for total blinded population). 
All other information is identical to Model 1A.
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 Exponential Bernoulli (EXP_BERN) – Right-censored(1) Poisson likelihood  
 Model (2) [EXP_BERN]
 Incidence count in which events arrive from a Poisson distribution can be 

modeled with a right-censored(1) Poisson distribution (i.e., all event 
counts within a subject greater than 1 are re-valued to 1). 

 As seen above, the formula is a Bernoulli distribution in which the 
probability of an event is derived from the relationship between the 
Poisson and exponential distribution.  The model is parameterized as 
follows:

 Model (1B) [Poisson (2)]: Time-at-risk exposure time used in calculations

Models Evaluated: Constant Hazard Rate

f(yi; λti) = (1 - e-λt[i])y[i] (e-λt[i]) {1 – y[i]} ; xi = 0, 1

Model (2): EXP_BERN:  Yi | λp, r, k, ti ~ Mixture Bernoulli(πpti, πdti, )  ;   i=1,…,N
where:  πpti =  1 – exp[-λp(ti)] ,  and  πdti =  1 – exp[-rλp(ti)]            

λp ~ Gamma(αp=[ λHP x  PTHP]/DF, βp = PTHP/DF} 
r = p /k(1-p), relative risk ratio of test (drug) treatment over placebo
k     =  Randomization allocation ratio
p ~ Beta(0.5, 0.5)
ti represents the follow-up time for patient I; DF = Discount Factor
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 Log-logistic Bernoulli (LL_BERN)  
 Model (3) [LL_BERN]
 Incidence count in which events arrive from underlying non-constant 

hazard rates can be modeled with a log-logistic distribution.  The model is 
parameterized as follows:

Models Evaluated: Non-constant Hazard Rate

Model (3): LL_BERN:  Yi | µp, µd, σp, σd, ti ~ Mixture Bernoulli(πpti, πdti, )  ;   i=1,…,N     

where:  πpti = 1 - 1 / [1 + exp((ln(ti ) - µp)/ σp )] ;  i = 1,…,N 

πdti = 1 - 1 / [1 + exp((ln(ti ) - µd)/ σd )] ;  i = 1,…,N  

µp ~ Gamma(α = a/DFp, β = PTHP/DFp )   

µd ~ Gamma(α = a/DFd , β = PTHP/DFd ) 

σp ~ Gamma (α = b/DFp , β = PTHP/DFp ) 

σd ~ Gamma (α = b/DFd , β = PTHP/DFd )  

ti represents the follow-up time for patient i.
DF = Discount Factor
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 Table of models investigated

Models Evaluated: Summary

Model 
Number

Model Name Priors Likelihood 
(data) 
model

HR 
Assumption

Model 1A Poisson(1) [bdribs] PBO rate (δHP) ~ Gamma; 
Rate Ratio ~ Beta

Poisson Constant

Model 1B Poisson(2) [modified 
bdribs – exposure time]

PBO rate (δHP) ~ Gamma; 
Rate Ratio ~ Beta

Poisson Constant

Model 2 EXP_BERN PBO rate (λP) ~ Gamma; 
Rate Ratio ~ Beta

Exponential-
Bernoulli

Constant

Model 3 LL_BERN PBO rate (µp, σp) ~ Gamma
DRG rate (µd σd) ~ Gamma

Log-logistic-
Bernoulli

Non-constant
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Obs. Data:
N = 80 
(but with variable follow-up time (1.6 – 24 weeks)
Observed events = 5
P(θ > θc | Y) = 0.9527   (where θ = RR, θc = 1)

From Bayesian Exponential-Bernoulli model 
(allows for variable follow-up) 

Models Evaluated (simple example)

 Core Question Re-visited (slightly modified)



Robust Safety Monitoring and Signal Detection: Using Alternatives to the Standard Poisson Distribution | MBSW | June 2022 | Copyright © 2015 AbbVie 38

 Objectives and Data Creation Methods

Simulation Methods

Objective of Simulations
 Compare the various methods for efficiency and estimation accuracy

 Assess the sensitivity (power) and specificity (false positives) of the methods
 Compare estimates obtained from each model to expected values (e.g. 

underlying means specified in the simulated data)

Data Creation Methods Overview
 Simulated time to adverse event

 Constant HR: (Weibull distribution with shape parameter=
1 ~ Exponential Distribution])

 Non-constant HR: (Log-logistic Distribution)

 Simulated enrollment of patients using the Uniform distribution
 Allowed for simulation of separate interim SSD cuts in which patients,  

time-at-risk and events accrued over time. 
 Simulated variable event rates, treatment effects, sample size, hazard 

functions
 Number of simulated trials (up to 500)
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Simulation Methods (Scenarios)

Hazard 
Ratio

Under-
lying 
Dis-
tribution

Sim-
ulation
No. 

IR 
Scenario Parameter Pbo

Act (at Final 
Time-point) Visit

Approx. 
Total N

Constant
Expo-
nential

1.1 - 1.4 Low Wk 52 IP 0.5% 4.0% Interim 2 150 - 375

2.1 - 2.4 Medium Wk 52 IP 10% 10 - 25% Interim 2 150

3.1 - 3.4 High Wk 52 IP 30% 30 - 50% Final 200

De-creasing
Log-
logistic

4.1 - 43
Low/

Medium

µ (inter) 9.85 9.85, 8.35, 7.4
Interim 3 375σ (scale) 2.0 2.0

Wk 104 IP 5.0% 5.0 - 15.1% 

5.1 - 52 High
µ (inter) 6.17 6.17
σ (scale) 1.6 1.6 Interim 1, 2, 3 200 - 400
Wk 52 IP 20.0% 20.0%

In-creasing
Log-
logistic

6.1 - 6.4
Low/

Medium

µ (inter) 7.3 7.3, 6.5, 6.1, 5.85
Interim 4 150σ (scale) 0.8 0.8

Wk 104 IP 3.5% 3.5 – 18.1%

7.1 - 7.4 High

µ (inter) 5.85 5.85, 5.5, 5.15, 5.07
150     σ (scale) 0.7 0.7, 0.7, 0.6, 0.7 Final

Wk 104 IP 15.2% 15.2 – 35.3%
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 Results (1.1 – 1.4)

Simulation Results (Constant Hazard Rates)

Power 
Curve 
(by N)

No 
differences 
with low AE 
rates

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

100 200 300 400

Pr
ob

ab
ili

ty
 o

f E
xc

ee
di

ng
 T

hr
es

ho
ld

Total Sample Size

Power to Detect a Signal (Low Inc. Prop.) as Function of N
(Placebo = 0.5%, Active = 4.0%, Rand. Ratio = 1:1, Interim = 2

Posterior Probability Cutpoint [Threshold Limit for Signal] = 0.925)

EXP_BERN Poisson(1) Poisson(2)



Robust Safety Monitoring and Signal Detection: Using Alternatives to the Standard Poisson Distribution | MBSW | June 2022 | Copyright © 2015 AbbVie 41

 Results (2.1 – 2.4)

Simulation Results (Constant Hazard Rates)

Power 
Curve 
(by RD)

Differences 
in Poisson 
models 
(with using 
total FU vs 
total Time-
at-risk)
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 Results (3.1 – 3.4)

Simulation Results (Constant Hazard Rates)

Power 
Curve 
(by RD)

Poisson(2) 
not viable 

Improved 
Power with 
EXP_BERN
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 Results (4.1 – 4.3)

Simulation Results (Non-constant Hazard Rates - Decreasing)

Power 
Curve 
(by RD)
Unacceptable 
false positive 
rates for 
Poisson and 
EXP_BERN 
models
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 Results (4.1 – 4.3)

Simulation Results (Non-constant Hazard Rates - Decreasing)

Model 
Estimation 
Accuracy
The LL_BERN 
model is 
much more 
precise than 
the other 
models (in 
which the RD 
is consistently  
over-
estimated).
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 Results (5.1)

Simulation Results (Non-constant Hazard Rates - Decreasing)

Model 
Est-
imation
Accuracy:

Substanial
Errors 
from 
EXP_BERN 
and 
Poisson (2) 
Models –
False 
Positive 
rates > 
40%
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 Results (5.2)

Simulation Results (Constant Hazard Rates - )

Model 
Est-
imation
Accuracy:

Opposite 
pattern 
emerges 
compared 
to Result 
5.1. 
Estimation 
error from 
LL_BERN 
Model.

-6.0%

-5.0%

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

1.0%

0 1 2 3 4

O
bs

er
ve

d 
Ri

sk
 D

iff
er

en
ce

 (f
ro

m
 e

ac
h 

m
od

el
)

Interim Look

Model Estimation Accuracy (High Inc. Prop. - Constant Hazard Rate)    
Risk Difference [Active - Placebo] 

(Placebo = 20%, Total N=400, Rand. Ratio = 1:1, Interim = 1, 2, 3)

Expected RD (Sim)

EXP_BERN

Poisson(2)

LL_BERN



Robust Safety Monitoring and Signal Detection: Using Alternatives to the Standard Poisson Distribution | MBSW | June 2022 | Copyright © 2015 AbbVie 47

 Results (6.1 – 6.4)

Simulation Results (Non-constant Hazard Rates - Increasing)

Power 
Curve 
(by RD)
Improved 
Power with 
LL_BERN 
model
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 Results (7.1 – 7.4)

Simulation Results (Non-constant Hazard Rates - Increasing)

Power 
Curve 
(by RD)
Noticeable 
drop in 
power for 
Poisson 
model
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Simulation Results (Discussion / Summary)

Models assessed by event estimation accuracy, empirical power 
(sensitivity), false-positive rates (specificity)

Constant Underlying Hazard Rates:  
With low event rates  (e.g., < 5% IP 1-year rate) all assessed models were comparable
With medium to high rates:

 The Poisson (bdribs) model must be run using adjusted exposure time (excluding time after 
the event). 

 The EXP_BERN model performs reasonably well and gives slight improvements in accuracy 
and power (specificity).

 Non-constant Underlying Hazard Rates

 With decreasing hazard rates (and larger sample size) the Poisson and
EXP_BERN models produce inaccurate event estimation and unacceptable false-
positive rates. The LL_BERN model performs much better.  

 With increasing hazard rates, the LL_BERN model produces better event 
estimation and superior power. The EXP_BERN model slightly out-performs the
Poisson model (with adjusted exposure time).   
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Simulation Results (Discussion / Summary)

Practical Considerations

 Poisson (bdribs) model runs much faster and is easily used to make projections with
additional exposure patient-years (preferred method with small rates and constant
hazard rates)  

 With larger rates, the EXP_BERN model is a bit more sensitive in finding safety signals, 
but run-time is noticeably slower.

 With non-constant hazard rates, the LL_BERN provides a noticeable boost in 
sensitivity (power) without increasing false positive rates, but run run-time is also an 
issue.

 In real-world applications we don’t always have a good handle on the characteristics 
of our data. The proposed models may serve as good sensitivity checks to the more 
standard Poisson-based models.

 Real-world applications in which Poisson models may not hold include SSD for 
malignancies (increasing hazards over time), survival studies (in which blinded 
monitoring is conducted initially), significant events in oncology studies (in which 
adverse event rates tend to be much higher). 
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 Incidence (count): Alternative Look

SSD Visualization: (Threshold Plots)
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 Incidence Proportion

SSD Visualization: (Threshold Plots)
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 Incidence Rate

SSD Visualization: (Threshold Plots)
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Conclusion
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 Improved coding for faster program run-times so that 
operating characteristics of models can be done in a timely 
manner.

 Choice, selection and impact of priors on outcomes (note: 
Prior selection has a significant impact on outcomes).
 Incorporate methods to estimate prior ESS (to ensure fair model    

comparison when developing models and investigating operation 
characteristics)

 Other models (time-to-event), exponential piece-wise, log-
normal distributions, Weibull, negative-binomial, etc.

Additional Research
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 Expansion within and beyond AE Analysis

Expansion of SSD

 Incorporation of additional features to better control historical 
populations (e.g. Poisson regression, propensity scores,
better methods/process for down-weighting historical data, etc.)

 Multiplicity control (finding the proper balance)

 Expansion to Vital signs, clinical labs, and ECG data

 Visualization Tools and Dashboard Displays
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 Final Thoughts / Summary

Lessons learned / final thoughts / conclusions

o Continued development of SSD and all Standardized Safety Evaluation and 
Analysis is Critical

o The Bayesian Framework provides a useful tool for conducting SSD analysis 
with continuous updating and aggregation of clinical trials data

o Simulations provide a comprehensive method for evaluating methods and 
testing ideas

o Understand underlying data distributions to select the appropriate model.
o Expansion to other safety domains should be developed:

 Clinically significant lab and ECG findings can be analyzed using a similar 
Bayesian framework
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Questions?
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Thanks
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